10. Hypervelocity star(Bintang hipercepat)
Bintang hipercepat (Inggris: hypervelocity star atau HVS) adalah bintang yang bergerak dengan kecepatan ekstrim (lebih dari 1000 km/detik). Bintang-bintang ini dihasilkan oleh sebuah perjumpaan (encounter) dinamik antara bintang ganda dekat dengan lubang hitam di Pusat Galaksi kita. Keberadaan bintang jenis ini pertama kali diformulasikan oleh Jack Hills[1] (1988) sebagai sebuah simulasi teoritik.
Yang ingin lebih tau tentang ini
Yang ingin lebih tau tentang ini
9.Black Holes(lubang hitam)
Lubang hitam adalah sebuah pemusatan massa yang cukup besar sehingga menghasilkan gaya gravitasi yang sangat besar. Gaya gravitasi yang sangat besar ini mencegah apa pun lolos darinya kecuali melalui perilaku terowongan kuantum. Medan gravitasi begitu kuat sehingga kecepatan lepas di dekatnya mendekati kecepatan cahaya. Tak ada sesuatu, termasuk radiasi elektromagnetik yang dapat lolos dari gravitasinya, bahkan cahaya hanya dapat masuk tetapi tidak dapat keluar atau melewatinya, dari sini diperoleh kata “hitam”. Istilah “lubang hitam” telah tersebar luas, meskipun ia tidak menunjuk ke sebuah lubang dalam arti biasa, tetapi merupakan sebuah wilayah di angkasa di mana semua tidak dapat kembali. Secara teoritis, lubang hitam dapat memliki ukuran apa pun, dari mikroskopik sampai ke ukuran alam raya yang dapat diamati.
Di pusat galaksi, lubang hitam sekitar 10.000 hingga 18 miliar kali lebih berat daripada matahari diperkirakan ada, diperbesar dengan menelan atas gas, debu, bintang-bintang dan lubang hitam kecil.
Di pusat galaksi, lubang hitam sekitar 10.000 hingga 18 miliar kali lebih berat daripada matahari diperkirakan ada, diperbesar dengan menelan atas gas, debu, bintang-bintang dan lubang hitam kecil.
8.Magnetars
Quote:
A magnetar is a type of neutron star with an extremely powerful magnetic field, the decay of which powers the emission of copious amounts of high-energy electromagnetic radiation, particularly X-rays and gamma rays.[1] The theory regarding these objects was proposed by Robert Duncan and Christopher Thompson in 1992, but the first recorded burst of gamma rays thought to have been from a magnetar was detected on March 5, 1979.[2] During the following decade, the magnetar hypothesis has become widely accepted as a likely explanation for soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs). |
Sebuah magnetar adalah jenis bintang neutron dengan medan magnet sangat kuat, peluruhan yang kekuatan emisi jumlah berlebihan tinggi energi radiasi elektromagnetik, khususnya sinar-X dan sinar gamma. [1] Teori mengenai objek-objek ini diusulkan oleh Robert Duncan dan Christopher Thompson pada tahun 1992, tetapi tercatat pertama ledakan sinar gamma diduga dari magnetar terdeteksi pada tanggal 5 Maret 1979. [2] Selama dekade berikutnya, maka hipotesis magnetar telah menjadi diterima secara luas sebagai kemungkinan penjelasan untuk soft gamma repeater (SGRs) dan anomali X-ray pulsar (AXPs).
7. Neutrinos
Neutrino adalah suatu partikel dasar. Neutrino mempunyai spin 1/2 dan oleh sebab itu merupakan fermion. Massanya sangat kecil, walaupun eksperimen yang terbaru (lihat Super-Kamiokande) menunjukkan bahwa massanya ternyata tidak sama dengan nol. Neutrino hanya berinteraksi lewat interaksi lemah dan gravitasi, tak satu pun lewat interaksi kuat atau interaksi elektromagnetik.
Karena dalam proses interaksi lemah, penampang nuklir sangat kecil, neutrino dapat melewati materi nyaris tanpa halangan. Untuk neutrino-neutrino tipikal yang dihasilkan di dalam Matahari (dengan energi beberapa MeV) diperlukan kira-kira satu tahun cahaya (~1016m) timbal untuk memblok setengah dari jumlahnya.
Quote:
Sekitar 150 miliar kecil, hampir partikel tak bermassa yang disebut neutrino saja melewatinya seakan bahkan tidak ada.Para ilmuwan telah menemukan bahwa mereka berasal dari bintang-bintang (hidup atau meledak), bahan nuklir dan dari Big Bang.
Yang ingin lebih tau tentang ini
Yang ingin lebih tau tentang ini
6. Dark Matter(materi gelap)
Materi gelap adalah materi yang tidak dapat dideteksi dari radiasi yang dipancarkan atau penyerapan radiasi yang datang ke materi tersebut, tetapi kehadirannya dapat dibuktikan dari efek gravitasi materi-materi yang tampak seperti bintang dan galaksi. Perkiraan tentang banyaknya materi di dalam alam semesta berdasarkan efek gravitasi selalu menunjukkan bahwa sebenarnya ada jauh lebih banyak materi daripada materi yang dapat diamati secara langsung. Terlebih lagi, adanya materi gelap dapat menyelesaikan banyak ketidakkonsistenan dalam teori dentuman dahsyat.
Sebagian besar massa di alam semesta dipercaya berada dalam bentuk ini. Menentukan sifat dari materi gelap juga dikenal sebagai masalah materi gelap atau masalah hilangnya massa, dan merupakan salah satu masalah penting dalam kosmologi modern.
Pertanyaan tentang adanya materi gelap mungkin tampak tidak relevan dengan keberadaan kita di bumi. Akan tetapi, ada atau tidaknya materi gelap ini dapat menentukan takdir terakhir dari alam semesta. Kita mengetahui bahwa sekarang alam semesta mengalami pengembangan karena cahaya dari benda langit yang jauh menunjukkan adanya pergeseran merah. Banyaknya materi biasa yang terlihat di alam semesta tidaklah cukup untuk membuat gravitasi menghentikan pengembangan, dan dengan demikian pengembangan akan berlanjut selamanya tanpa adanya materi gelap. Pada prinsipnya, jumlah materi gelap yang cukup di alam semesta dapat menyebabkan pengembangan alam semesta berhenti, atau kebalikannya (yang akhirnya membawa kita pada Big Crunch). Pada prakteknya, sekarang banyak anggapan bahwa gerakan-gerakan alam semesta didominasi oleh komponen lainnya, energi gelap.
Quote:
If you put all of the energy and matter of the cosmos into a pie and divvy it up, the result is shocking. All of the galaxies, stars, planets, comets, asteroids, dust, gas and particles account for just 4 percent of the known universe. Most of what we call “matter” — about 23 percent of the universe — is invisible to human eyes and instruments. For now. Scientists can see dark matter’s gravitational tug on stars andgalaxies, but are searching feverishly for ways to detect it first-hand. They think particles similar to neutrinos yet far more massive could be the mysterious, unseen stuff. |
Jika anda menempatkan semua energi dan materi alam semesta menjadi pai dan membagi-bagi itu, hasilnya mengejutkan.
Semua galaksi, bintang, planet, komet, asteroid, debu, gas, dan partikel terhitung hanya 4 persen dari alam semesta yang diketahui. Sebagian besar dari apa yang kita sebut “masalah” – sekitar 23 persen dari alam semesta – tidak terlihat mata manusia dan instrumen.
Untuk saat ini.
Para ilmuwan dapat melihat gravitasi materi gelap menarik-narik bintang dan galaksi, tetapi buru-buru mencari cara untuk mendeteksi itu tangan pertama. Mereka berpikir mirip dengan partikel neutrino namun jauh lebih besar bisa menjadi misterius, hal-hal gaib.
Yang ingin lebih tau tentang ini
Semua galaksi, bintang, planet, komet, asteroid, debu, gas, dan partikel terhitung hanya 4 persen dari alam semesta yang diketahui. Sebagian besar dari apa yang kita sebut “masalah” – sekitar 23 persen dari alam semesta – tidak terlihat mata manusia dan instrumen.
Untuk saat ini.
Para ilmuwan dapat melihat gravitasi materi gelap menarik-narik bintang dan galaksi, tetapi buru-buru mencari cara untuk mendeteksi itu tangan pertama. Mereka berpikir mirip dengan partikel neutrino namun jauh lebih besar bisa menjadi misterius, hal-hal gaib.
Yang ingin lebih tau tentang ini
5. Dark Energy (energi gelap)
Dalam kosmologi, energi gelap adalah suatu bentuk hipotesis dari energi yang mengisi seluruh ruang dan memiliki tekanan negatif yang kuat. Menurut teori relativitas umum, efek dari adanya tekanan negatif secara kualitatif serupa dengan memiliki gaya pada skala besar yang bekerja secara berlawanan terhadap gravitasi. Yang ingin lebih tau tentang ini
Quote:
What really has everyone on the planet confused — including scientists — is dark energy. To continue with the pie analogy, dark energy is a Garfield-sized portion at 73 percent of the known universe. It seems to pervade all of space and push galaxies farther and farther away from one another at increasingly faster speeds. Some cosmologists think this expansion will leave the Milky Waygalaxy as an “island universe” in a few trillion years with no othergalaxies visible. Others think the rate of expansion will become so great that it will result in a “Big Rip.” In this scenario, the force of dark energy overcomes gravity to disassemble stars and planets, the forces keeping particles sticking together, the molecules in those particles, and eventually the atoms and subatomic particles. Thankfully, humankind probably won’t be around to witness to cataclysm. |
Yang benar-benar telah semua orang di planet bingung – termasuk para ilmuwan – adalah energi gelap. Untuk melanjutkan pai analogi, energi gelap adalah bagian berukuran Garfield di 73 persen dari alam semesta yang diketahui. Sepertinya menyerap semua ruang dan mendorong galaksi jauh dan semakin jauh dari satu sama lain pada kecepatan semakin cepat. Beberapa ahli kosmologi mengira ekspansi ini akan meninggalkan galaksi Bima Sakti sebagai “pulau alam semesta” dalam beberapa triliun tahun tanpa terlihat galaksi-galaksi lain. Orang lain berpikir tingkat ekspansi akan menjadi begitu besar sehingga akan menghasilkan sebuah “Big Rip.” Dalam skenario ini, gaya gravitasi energi gelap membongkar mengatasi bintang-bintang dan planet-planet, kekuatan-kekuatan partikel-partikel tetap bersatu, molekul-molekul dalam partikel-partikel tersebut, dan akhirnya atom-atom dan partikel-partikel subatomik. Syukurlah, mungkin manusia tidak akan sekitar untuk menjadi saksi bencana alam.
4. Planets
It might sound strange because we live on one, but planets are some of the more mysterious members of the universe. So far, no theory can fully explain how disks of gas and dust around stars form planets — particularly rocky ones. Not making matters easier is the fact that most of a planet is concealed beneath its surface. Advanced gadgetry can offer clues of what lies beneath, but we have heavily explored only a few planets in the solar system. Only in 1999 was the first planet outside of our celestial neighborhood detected, and in November 2008 the first bona fide exoplanet images taken.
Mungkin kedengarannya aneh karena kita hidup di satu, tetapi planet adalah beberapa anggota yang lebih misterius dari alam semesta. Sejauh ini, tidak ada teori dapat sepenuhnya menjelaskan bagaimana disk gas dan debu di sekitar bintang membentuk planet – khususnya yang berbatu. Tidak membuat hal-hal yang lebih mudah adalah kenyataan bahwa sebagian besar dari sebuah planet yang tersembunyi di bawah permukaannya. Advanced gadget dapat memberikan petunjuk tentang apa yang ada di bawah, tapi kami punya sangat dieksplorasi hanya beberapa planet dalam tata surya. Hanya pada tahun 1999 adalah planet pertama di luar angkasa lingkungan kita terdeteksi, dan pada bulan November 2008 bonafide pertama planet ekstrasurya gambar yang diambil.
3. Gravity
The force that helps stars ignite, planets stay together and objects orbit is one of the most pervasive yet weakest in the cosmos Scientists have fine-tuned just about every equation and model to describe and predict gravity, yet its source within matter remains a complete and utter mystery. Some think infinitesimal particles called gravitons exude the force in all matter, but whether or not they could ever be detected is questionable. Still, a massive hunt is on for major shake-ups in the universe called gravitational waves. If detected (perhaps from a merger of black holes), Albert Einstein’s concept that the universe has a “fabric” of spacetime would be on solid ground.
Kekuatan yang membantu bintang-bintang menyala, planet tetap bersama dan benda orbit adalah salah satu yang paling meresap namun terlemah di kosmos Para ilmuwan telah melakukan fine-tuned hampir setiap persamaan dan model untuk menjelaskan dan memprediksi gravitasi, namun sumber masalah dalam tetap yang lengkap dan mengucapkan misteri. Sebagian orang berpendapat sangat kecil yang disebut partikel graviton memancarkan kekuatan dalam segala hal, tetapi apakah mereka tidak pernah bisa dideteksi dipertanyakan. Namun, perburuan besar-besaran adalah selama menjabat-up utama di alam semesta yang disebut gelombang gravitasi. Jika terdeteksi (mungkin dari penggabungan lubang hitam), Albert Einstein konsep bahwa alam semesta memiliki sebuah “kain” dari ruang-waktu akan berada di tanah yang kokoh.
2. Life
Matter and energy abound in the universe, but only in a few places is the roll of the cosmic dice perfect enough to result in life. The basic ingredients and conditions necessary for this strange phenomenon are better understood than ever before, thanks to abundant access to life here on Earth. But the exact recipe — or recipes — to go from the basic elements of carbon, hydrogen, nitrogen, oxygen, phosphorus and sulfur to an organism is a prevailing mystery. Scientists seek out new areas in the solar system where life could have thrived (or still may, such as below the surface of watery moons), in hopes of arriving at a compelling theory for life’s origins.
Materi dan energi berlimpah-limpah di alam semesta, tapi hanya di beberapa tempat adalah gulungan dadu kosmis cukup sempurna untuk menghasilkan kehidupan. Bahan dasar dan kondisi yang diperlukan untuk fenomena aneh ini dipahami lebih baik daripada sebelumnya, berkat berlimpah akses kehidupan di Bumi. Tapi resep yang tepat – atau resep – untuk pergi dari unsur-unsur dasar karbon, hidrogen, nitrogen, oksigen, fosfor dan belerang ke sebuah organisme adalah sebuah misteri yang berlaku. Para ilmuwan mencari daerah baru di tata surya di mana kehidupan bisa berkembang (atau masih mungkin, seperti di bawah permukaan air bulan), dengan harapan untuk mencapai teori yang menarik bagi asal usul kehidupan.
1. The Universe (semesta)
The source of energy, matter and the universe itself is the ultimate mystery of, well, the universe. Based on a widespread afterglow called the cosmic microwave background (and other evidence), scientists think that the cosmos formed from a “Big Bang” — an incomprehensible expansion of energy from an ultra-hot, ultra-dense state. Describing time before the event, however, may be impossible. Still, atom smasher searches for particles that formed shortly after the Big Bang could shed new light on the universe’s mysterious existence — and make it a bit less strange than it is today.
Sumber energi, materi dan alam semesta itu sendiri adalah misteri tertinggi, baik, alam semesta. Berdasarkan Pijaran ekor yang tersebar luas yang disebut latar belakang gelombang mikro kosmik (dan bukti lain), para ilmuwan berpikir bahwa alam semesta terbentuk dari sebuah “Big Bang” – sebuah ekspansi dimengerti energi dari ultra-panas, ultra-negara padat. Menggambarkan waktu sebelum acara, bagaimanapun, mungkin mustahil. Namun, atom, pukulan keras mencari partikel yang terbentuk tak lama setelah Big Bang bisa menjelaskan baru tentang keberadaan misterius alam semesta – dan membuatnya menjadi sedikit lebih aneh daripada sekarang ini
No comments:
Post a Comment